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Some results with respect to Hosoya index and Merrifield–Simmons index of tree-type
hexagonal systems (catacondensed hydrocarbons) are shown. Using the results, the tree-type
hexagonal systems with minimum, second minimum Hosoya index and maximum, second
maximum Merrifield–Simmons index are determined. These results generalize some known
results on extremal hexagonal chains.

1. Introduction

A hexagonal system (benzenoid hydrocarbon) is regarded as a 2-connected plane
graph in which every finite region is a regular hexagon of unit side length. Hexagonal
systems are of great importance for theoretical chemistry because they are the natural
graph representations of benzenoid hydrocarbons [1]. A hexagonal system is a tree-type
one if it has no inner vertex. The tree-type hexagonal systems are the graph repre-
sentations of an important subclass of benzenoid molecules, namely of the so called
catacondensed benzenoids.

In order to describe our results, we need some graph-theoretic notation and termi-
nology. Our standard reference for any graph theoretical terminology is [2].

Let G = (V ,E) be a graph and A be a subset of V . The subgraph of G whose
vertex set is A and whose edge set is the set of those edges of G that have both end-
vertices in A is called the subgraph of G induced by A, and is denoted by G[A]. The
induced subgraph G[V − A] is denoted by G − A. If A = {v} we write G − v for
G − {v}. Denote by N[A] the union of A and the set of neighbors of A in G. If
A = {a1, a2, . . . , am}, then we write N[a1, a2, . . . , am] instead of N[{a1, a2, . . . , am}].

A subset M of E is called a matching if no two edges of M are incident in G. It is
both consistent and convenient to regard the empty edge set as a matching. A subset I
of V is called an independent set if no two vertices of I are adjacent in G. We also regard
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the empty vertex set as an independent set. We denote by µ(G) and σ (G) the numbers
of matchings of G and the number of independent sets of G, respectively.

Hosoya in [3] proposed the graph-theoretical invariant µ(G) for quantifying cer-
tain structural features of organic molecules. Numerous studies of µ(G) have been
undertaken (see [4–6]). The invariant µ is nowadays commonly called “Hosoya index”.
Merrifield and Simmons in [7] developed a topological approach to structural chemistry.
The cardinality of the topological space in their theory turns out to be equal to σ (G) of
the respective molecular graph G. In [5], Gutman first use “Merrifield–Simmons index”
to name the quantity.

Denote by Tn the set of tree-type hexagonal systems containing n hexagons. Let
T = ⋃∞

1 Tn, and T ∈ T . Let H be a hexagon of T . Obviously, H has at most three
adjacent hexagons in T . If H has exactly three adjacent hexagons in T , then H is called
a full-hexagon of T ; if H has two adjacent hexagons in T , and, moreover, if its two
vertices with degree two are adjacent, then call H a turn-hexagon of T ; and if H has
at most one adjacent hexagon in T , then H is called an end-hexagon of T . Figure 1
illustrates a tree-type hexagonal system with 19 hexagons, in which H3, H6 and H12

are its full-hexagons, H2,H8,H9,H11,H13,H16,H17 and H18 are its turn-hexagons, and
H1,H4,H10,H15 and H19 are its end-hexagons. It is easy to see that the number of the
end-hexagons of a tree-type hexagonal system of n � 2 hexagons is more two than the
number of its full-hexagons.

A hexagonal chain is a tree-type hexagonal system without full-hexagons. Let
C be a hexagonal chain with n hexagons H1,H2, . . . , Hn, where Hi and Hi+1 have
a common edge for each i = 1, 2, . . . , n − 1. We may denote the hexagonal chain
by C = H1H2 . . . Hn. A hexagonal chain with at least two hexagons has two end-
hexagons. Let T ∈ T and let B = H1H2 . . . Hk, k � 2 be a hexagonal chain of T .
If the end-hexagon H1 of B is also an end-hexagon of T , the other end-hexagon Hk is
a full-hexagon of T , and for 2 � i � k − 1, Hi is not a full-hexagon of T , then B

is called a branch of T . For example, B = H19H18H17H16H12 is a branch of the tree-
type hexagonal system illustrated in figure 1. If T ∈ T is not a hexagonal chain, then
the number of branches of T is equal to the number of end-hexagons of T . A linear
chain is a hexagonal chain without turn-hexagons. Denote by Ln the linear chain with

Figure 1. A tree-type hexagonal system.
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n hexagons. A single-angular hexagonal chain is a hexagonal chain with exactly one
turn-hexagon. Suppose that C is a single-angular hexagonal chain. By the definition of
single-angular hexagonal chain, its turn-hexagon connects two linear chains, say Li , Lj .
Denote by Li

j the singly-angular hexagonal chain of i + j + 1 hexagons. Obviously, we

have Li
j = L

j

i . For convenience, we always suppose that j � i and L0
j = Lj+1.

Over the years a variety of related properties of hexagonal chains with respect to
some indices have been widely studied (for example, [5,6,8–18]). As for the extremal
properties, two extremal hexagonal chains with respect to Hosoya index and Merrifield–
Simmons index are linear chain and zigzag chain determined in [5] and [6], respectively.
If hexagonal chains are restricted in k∗-cycle resonant chains, their two extremal chains
are zigzag chain and helicene chain determined in [14]. Gutman, in [5], pointed out
the linear hexagonal chain Ln is the unique hexagonal chain with minimum Hosoya
index and maximum Merrifield–Simmons index among all the hexagonal chains with n

hexagons. He proved the following.

Theorem 1 [5]. For any n � 1 and any hexagonal chain C with n hexagons,

(a) µ(Ln) � µ(C) with the equality only if C = Ln,

(b) σ (Ln) � σ (C) with the equality only if C = Ln.

In [16] and [17], the hexagonal chains with the second minimum Hosoya index and
the second maximum Merrifield–Simmons index are determined.

Theorem 2. For any n � 3 and any hexagonal chain C with n hexagons,

(a) if C �= Ln, then µ(L1
n−2) � µ(C) with the equality only if C = L1

n−2 [17],

(b) if C �= Ln, then σ (L1
n−2) � σ (C) with the equality only if C = L1

n−2 [16].

In this paper, extending the class of hexagonal chains to the class of tree-type
hexagonal systems, we offer some results with respect to Hosoya index and Merrifield–
Simmons index of tree-type hexagonal systems. Using these results, we verify the linear
chain Ln and the singly-angular hexagonal chain L1

n−2 are also extremal on the two in-
dices among tree-type hexagonal systems with n hexagons by showing the followings.

Theorem 3. For any n � 1 and any T ∈ Tn,

(a) µ(Ln) � µ(T ) with the equality only if T = Ln.

(b) σ (Ln) � σ (T ) with the equality only if T = Ln.

Theorem 4. For any n � 3 and any T ∈ Tn,

(a) if T �= Ln, then µ(L1
n−2) � µ(T ) with the equality only if T = L1

n−2,

(b) if T �= Ln, then σ (L1
n−2) � σ (T ) with the equality only if T = L1

n−2.
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Note that the hexagonal chains belong to the class of tree-type hexagonal systems.
Therefore, theorems 3 and 4 generalize theorems 1 and 2, respectively.

2. Auxiliary lemmas

The following recurrence relations are basic, and can be found in [3–5].

(a) If G = G1 ∪ G2, (that is, G is a graph composed of disjoint components G1

and G2), then

µ(G)=µ(G1)µ(G2), (1)

σ (G)= σ (G1)σ (G2). (2)

(b) Let e = uv be an edge of G, and x be a vertex of G. Then

µ(G)=µ(G− e)+ µ(G− u− v), (3)

σ (G)= σ (G− x)+ σ
(
G−N[x]). (4)

We add some notations which are convenient to express useful results. For a given
linear chain Ln, denote by x′n, xn, yn, y′n the four clockwise successful vertices with de-
gree two in one of end-hexagons. The turn-hexagon in a singly-angular hexagonal chain
Li
j has two vertices with degree two. Denote by ui, vj the two vertices such that ui links

Li by an edge and vj links Lj by another edge, (see figure 2(b)). For L0
j = Lj+1, let

u0 = xj+1 and vj = x′j+1.
For k � 1, set

λk = µ(Lk), ξk = µ(Lk − xk) = µ(Lk − yk), ηk = µ(Lk − xk − yk),

ξ ′k = µ
(
Lk − x′k

) = µ
(
Lk − y′k

)
, η′k = µ

(
Lk − x′k − xk

) = µ
(
Lk − yk − y′k

)
.

Let λ0 = 2, ξ0 = 1 and η0 = 1. Noting that λ1 = 18, ξ1 = 8 and η1 = 5, and using
the formulas (1) and (3) (referring to figure 2), we can deduce that for k � 1,

λk = 5λk−1 + 6ξk−1 + 2ηk−1,

ξk = 2λk−1 + 3ξk−1 + ηk−1,

(a) (b)

Figure 2. (a) Ln, (b) Li
j .
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ξ ′k = 3λk−1 + 2ξk−1, (5)

ηk = λk−1 + 2ξk−1 + ηk−1,

η′k = 2λk−1 + ξk−1,

And for i � 0,

µ(Li
j )= 2λiλj + λiξj + ξiλj + 3ξiξj + ξiηj + ηiξj + ηiηj ,

µ(Li
j − ui)= λiλj + λiξj + ξiξj + ξiηj ,

µ(Li
j − vj )= λiλj + ξiλj + ξiξj + ηiξj ,

µ(Li
j − ui − vj )= λiλj + ξiξj .

(6)

For k � 1, set

λk = σ (Lk), ξ k = σ (Lk − xk) = σ (Lk − yk), ηk = σ (Lk − xk − yk),

ξ
′
k = σ

(
Lk − x′k

) = σ
(
Lk − y′k

)
, η′k = σ

(
Lk − x′k − xk

) = σ
(
Lk − yk − y′k

)
.

Let λ0 = 3, ξ0 = 2 and η0 = 1. Noting that λ1 = 18, ξ 1 = 13 and η1 = 8, and using
the formulas (2) and (4) (referring to figure 2), we get that for k � 1,

λk = 3λk−1 + 4ξ k−1 + ηk−1,

ξ k = 2λk−1 + 3ξ k−1 + ηk−1,

ξ
′
k = 3λk−1 + 2ξ k−1, (7)

ηk = λk−1 + 2ξ k−1 + ηk−1,

η′k = 2λk−1 + ξ k−1.

Similarly, for i � 1, we have

σ
(
Li
j

)= (
λi−1 + 2ξ i−1 + ηi−1

)(
2λj + ξj

)

+ (
λi−1 + ξ i−1

)(
λj + 3ξ j + ηj

)
,

σ
(
Li
j − ui

)= ξ i
(
λj + ξ j

)+ (
λi−1 + ξ i−1

)(
ξj + ηj

)
,

σ
(
Li
j − vj

)= λj
(
ξ i + ηi

)+ 2ξ j
(
λi−1 + ξ i−1

)
,

σ
(
Li
j − ui − vj

)= ξ iλj +
(
λi−1 + ξ i−1

)
ξj .

Noting that λ0 = 3, ξ 0 = 2 and η0 = 1, and by (7), we get that for i � 0

σ
(
Li
j

)= ηi
(
2λj + ξj

)+ (
ξ i − ηi

)(
λj + 3ξ j + ηj

)
,

σ
(
Li
j − ui

)= ξ i
(
λj + ξj

)+ (
ξ i − ηi

)(
ξ j + ηj

)
,

σ
(
Li
j − vj

)= (
ξ i + ηi

)
λj + 2

(
ξ i − ηi

)
ξj ,

σ
(
Li
j − ui − vj

)= ξ iλj +
(
ξ i − ηi

)
ξ j .

(8)

From (5) and (7), we have the following.
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Lemma 1. (a) For k � 1, λk > ξk + ηk and λk < ξk + ηk.

(b) For k � 2, λk > ξ ′k > ξk > η′k > ηk and λk > ξk > ξ
′
k > ηk > η′k.

Lemma 2. For k � 0, we have

(a) ξk/λk, ηk/λk, ηk/ξk are three strict decrease functions of k ([17]),

(b) ξ k/λk, ηk/λk, ηk/ξk are three strict increase functions of k.

Proof. In [16], it is proved that ξ k/λk is a strict increase function of k. So we only need
to prove that ηk/λk and ηk/ξk are strict increase functions of k.

Noting that 2ξ 0 = λ0 + η0, and by (7), we obtain that for k � 0,

2ξ k = λk + ηk.

Thus, we get that for k � 1,

λk = 5λk−1 + 3ηk−1,

ξk = 7

2
λk−1 + 5

2
ηk−1, (9)

ηk = 2λk−1 + 2ηk−1.

Therefore

ηk+1λk − ηkλk+1 =
(
2λk + 2ηk

)
λk − ηk

(
5λk + 3ηk

)

= 2λ
2
k − 3λkηk − 3η2

k

= 4
(
2λ

2
k−1 − 3λk−1ηk−1 − 3η2

k−1

)

= 4k
(
2λ

2
0 − 3λ0η0 − 3η2

0

)

= 6 · 4k > 0.

Thus

ηk+1

λk+1
>

ηk

λk
,

i.e., ηk/λk is a strict increase function of k.
By (9), we can see that

ηk+1ξ k − ξ k+1ηk = 1

2

(
ηk+1λk − ηkλk+1

) = 3 · 4k > 0.

Hence ηk/ξk is also a strict increase function of k.
The proof of lemma 2 is complete. �
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3. Preliminary results and proofs

Suppose T1, T2 ∈ T , and pi, qi are two adjacent vertices with degree two in Ti ,
i = 1, 2. Denote by T1(p1, q1) ⊕ T2(p2, q2) the tree-type hexagonal system obtained
from T1 and T2 by identifying p1 with p2, and q1 with q2, respectively.

In the present section, for a given T ∈ T , we always assume that s, t are two
adjacent vertices with degree two in T , s1 is the vertex of T adjacent to s but not to t ,
and t1 is the vertex of T adjacent to t but not to s.

Theorem 5. For any T ∈ T and k � 2,

(a) µ(T (s, t)⊕Lk(xk, yk)) < µ(T (s, t)⊕Lk(x
′
k, xk)) = µ(T (s, t)⊕Lk(y

′
k, yk)),

(b) σ (T (s, t)⊕Lk(xk, yk)) > σ(T (s, t)⊕Lk(x
′
k, xk)) = σ (T (s, t)⊕Lk(y

′
k, yk)).

Proof. (a) Notice that if {e1, e2} is a matching of a graph G, then the set of matchings
of G can be partitioned into three subsets: the set of matchings containing no e1 and
e2; the set of matchings containing exact one of e1 and e2; and the set of matchings
containing e1 and e2.

Since {ss1, tt1} is a matching of the graph illustrated in figure 3(a), by the argument
mentioned above and (1), (3), we get

µ
(
T (s, t)⊕ Lk(xk, yk)

)

= µ(T − s − t)µ(Lk)+
[
µ

(
T −N[s])µ(Lk − xk)+ µ

(
T −N[t])µ(Lk − yk)

]

+µ
(
T −N[s, t])µ(Lk − xk − yk)

= µ(T − s − t)λk +
[
µ

(
T − N[s])ξk + µ

(
T − N[t])ξk

]+ µ
(
T −N[s, t])ηk.

Similarly, referring to figure 3(b),

µ
(
T (s, t)⊕ Lk

(
x′k, xk

))

= µ(T − s − t)µ(Lk)+
[
µ

(
T −N[s])µ(

Lk − x′k
)+ µ

(
T −N[t])µ(Lk − xk)

]

+µ
(
T −N[s, t])µ(

Lk − x′k − xk
)

= µ(T − s − t)λk +
[
µ

(
T −N[s])ξ ′k + µ

(
T −N[t])ξk] + µ(T −N[s, t])η′k.

Since ξk < ξ ′k and ηk < η′k by lemma 1(b), we have

µ
(
T (s, t)⊕ Lk(xk, yk)

)− µ
(
T (s, t)⊕ Lk

(
xk, x

′
k

))

(a) (b)

Figure 3. (a) T (s, t)⊕ Lk(xk, yk), (b) T (s, t)⊕ Lk(x
′
k
, xk).
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= µ
(
T − N[s])(ξk − ξ ′k

)+ µ
(
T −N[s, t])(ηk − η′k

)
< 0.

(b) Note that {s1, t1} is an independent set of the graph illustrated in figure 3(a).
Similar to the proof of (a), considering the sets of independent sets containing no s1

and t1, containing exact one of s1 and t1, and containing the s1 and t1, respectively, by (2)
and (4), we get

σ
(
T (s, t)⊕ Lk(xk, yk)

)

= σ (T − s1 − t1)σ (Lk)+
[
σ

(
T −N[s1]

)
σ (Lk − xk)+ σ

(
T −N[t1]

)
σ (Lk − yk)

]

+ σ
(
T −N[s1, t1]

)
σ (Lk − xk − yk)

= σ (T − s1 − t1)λk +
[
σ

(
T −N[s1]

)
ξ k + σ

(
T − N[t1]

)
ξ k

]+ σ
(
T − N[s1, t1]

)
ηk.

Similarly, referring to figure 3(b),

σ
(
T (s, t)⊕ Lk

(
x′k, xk

))

= σ (T − s1 − t1)σ (Lk)+
[
σ

(
T −N[s1]

)
σ

(
Lk − x′k

)

+ σ
(
T −N[t1]

)
σ (Lk − xk)

]+ σ
(
T −N[s1, t1]

)
σ

(
Lk − x′k − xk

)

= σ (T − s1 − t1)λk +
[
σ

(
T −N[s1]

)
ξ
′
k + σ

(
T − N[t1]

)
ξ k

]+ σ
(
T − N[s1, t1]

)
η′k.

Since ξ k > ξ
′
k and ηk > η′k by lemma 1(b), we have

σ
(
T (s, t)⊕ Lk(xk, yk)

)− σ
(
T (s, t)⊕ Lk

(
x′k, xk

))

= σ
(
T −N[s1]

)(
ξ k − ξ

′
k

)+ σ
(
T −N[s1, t1]

)(
ηk − η′k

)
> 0. �

Using of recurrence method leads immediately to

Corollary 1. Suppose C is a hexagonal chain with k hexagons, k � 1, and u, v are
two adjacent vertices with degree two of its one end-hexagon. Then for any T ∈ T the
following inequalities hold:

(a) µ(T (s, t)⊕ Lk(xk, yk)) � µ(T (s, t)⊕ C(u, v)),

(b) σ (T (s, t)⊕ Lk(xk, yk)) � σ (T (s, t)⊕ C(u, v)).

In the following theorem, as we note before, when i = 1, Li−1
j+1 = Lj+2, ui−1 =

xj+2 and vj+1 = x′j+2.

Theorem 6. For any T ∈ T and j � i � 1, we have

(a) µ(T (t, s) ⊕ Li−1
j+1(ui−1, vj+1)) < µ(T (s, t)⊕ Li

j (ui, vj )),

(b) σ (T (t, s)⊕ Li−1
j+1(ui−1, vj+1)) > σ(T (s, t)⊕ Li

j (ui, vj )).
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Proof. The proof of theorem 6 follows a similar pattern of reasoning as the proof of
theorem 5 and will be outlined in an abbreviated form.

(a) Note that

µ
(
T (s, t)⊕ Li

j (ui, vj )
)

= µ(T − s − t)µ
(
Li
j

)+ [
µ

(
T −N[s])µ(

Li
j − ui

)

+µ
(
T −N[t])µ(

Li
j − vj

)]+ µ
(
T − N[s, t])µ(

Li
j − ui − vj

)

and

µ
(
T (t, s) ⊕ Li−1

j+1(ui−1, vj+1)
)

= µ(T − s − t)µ
(
Li−1
j+1

)+ [
µ

(
T −N[s])µ(

Li−1
j+1 − vj+1

)

+µ
(
T −N[t])µ(

Li−1
j+1 − ui−1

)]+ µ
(
T −N[s, t])µ(

Li−1
j+1 − ui−1 − vj+1

)
.

Thus

µ
(
T (s, t)⊕ Li

j (ui, vj )
)− µ

(
T (t, s)⊕ Li−1

j+1(ui−1, vj+1)
)

= µ(T − s − t)
[
µ

(
Li
j

)− µ
(
Li−1
j+1

)]

+µ
(
T − N[s])[µ(

Li
j − ui

)− µ
(
Li−1
j+1 − vj+1

)]

+µ
(
T − N[t])[µ(

Li
j − vj

)− µ
(
Li−1
j+1 − ui−1

)]

+µ
(
T − N[s, t])[µ(

Li
j − ui − vj

)− µ
(
Li−1
j+1 − ui−1 − vj+1

)]
.

Applications of the formulas (5) and (6) lead

µ
(
Li
j

)− µ
(
Li−1
j+1

) = 3(ξi−1λj − λi−1ξj )+ 2(ηi−1λj − λi−1ηj )+ (ηi−1ξj − ξi−1ηj ),

µ
(
Li
j − ui

)− µ
(
Li−1
j+1 − vj+1

) = −(ξi−1λj − λi−1ξj ),

µ
(
Li
j − vj

)− µ
(
Li−1
j+1 − ui−1

) = 6(ξi−1λj − λi−1ξj)+ 3(ηi−1λj − λi−1ηj )

+ 2(ηi−1ξj − ξi−1ηj )

and

µ
(
Li
j − ui − vj

)− µ
(
Li−1
j+1 − ui−1 − vj+1

)

= 4(ξi−1λj − λi−1ξj )+ 2(ηi−1λj − λi−1ηj )+ (ηi−1ξj − ξi−1ηj ).

Noting that j > i − 1 and by lemma 2(a), we have ξi−1λj − λi−1ξj > 0, ηi−1λj −
λi−1ηj > 0, and ηi−1ξj − ξi−1ηj > 0.

Since µ(T − s − t) > µ(T −N[s]), we get

µ
(
T (s, t)⊕ Li

j (ui, vj )
)− µ

(
T (t, s) ⊕ Li−1

j+1(ui−1, vj+1)
)
> 0,

and hence theorem 6(a) is verified.
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(b) Similarly, note that

σ
(
T (s, t)⊕ Li

j (ui, vj )
)

= σ (T − s1 − t1)σ
(
Li
j

)+ [
σ

(
T −N[s1]

)
σ

(
Li
j − ui

)

+ σ
(
T −N[t1]

)
σ

(
Li
j − vj

)]+ σ
(
T −N[s1, t1]

)
σ

(
Li
j − ui − vj

)

and

σ
(
T (t, s)⊕ Li−1

j+1(ui−1, vj+1)
)

= σ (T − s1 − t1)σ
(
Li−1
j+1

)+ [
σ (T −N[s1]

)
σ

(
Li−1
j+1 − vj+1

)

+ σ
(
T −N[t1]

)
σ

(
Li−1
j+1 − ui−1

)]+ σ
(
T −N[s1, t1]

)
σ

(
Li−1
j+1 − ui−1 − vj+1

)
.

Thus

σ
(
T (s, t)⊕ Li

j (ui, vj )
)− σ

(
T (t, s) ⊕ Li−1

j+1(ui−1, vj+1)
)

= σ
(
T − s1 − t1

)[
σ

(
Li
j

)− σ
(
Li−1
j+1

)]

+ σ
(
T −N[s1]

)[
σ

(
Li
j − ui

)− σ
(
Li−1
j+1 − vj+1

)]

+ σ
(
T −N[t1]

)[
σ

(
Li
j − vj

)− σ
(
Li−1
j+1 − ui−1

)]

+ σ
(
T −N[s1, t1]

)[
σ

(
Li
j − ui − vj

)− σ
(
Li−1
j+1 − ui−1 − vj+1

)]
,

By (7) and (8), we get

σ
(
Li
j

)− σ
(
Li−1
j+1

) = (
ξ i−1λj − λi−1ξ j

)+ (
ηi−1λj − λi−1ηj

)
,

σ
(
Li
j − ui

)− σ
(
Li−1
j+1 − vj+1

) = 0,

σ
(
Li
j − vj

)− σ
(
Li−1
j+1 − ui−1

) = 3
(
ξ i−1λj − λi−1ξ j

)+ 2
(
ηi−1λj − ηjλi−1

)

and

σ
(
Li
j − ui − vj

)− σ
(
Li−1
j+1 − ui−1 − vj+1

) = 2
(
ξ i−1λj − λi−1ξj

)+ (
ηi−1λj − λi−1ηj

)
.

Therefore, by lemma 2(b), we get

σ
(
T (s, t)⊕ Li

j (ui, vj )
)− σ

(
T (t, s) ⊕ Li

j (ui−1, vj+1)
)
< 0. �

Combining theorem 6 and corollary 1, we have

Corollary 2. For any T ∈ T and j � i > 0:

(a) At least one of the following two inequalities holds:

µ
(
T (s, t)⊕ Li

j (ui, vj )
)
> µ

(
T (s, t)⊕ Li+j+1

(
xi+j+1, x

′
i+j+1

))

and

µ
(
T (s, t)⊕ Li

j (ui, vj )
)
> µ

(
T (t, s)⊕ Li+j+1

(
xi+j+1, x

′
i+j+1

))
.
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(b) At least one of the following two inequalities holds:

σ
(
T (s, t)⊕ Li

j (ui, vj )
)
< σ

(
T (s, t)⊕ Li+j+1

(
xi+j+1, x

′
i+j+1

))

and

σ
(
T (s, t)⊕ Li

j (ui, vj )
)
< σ

(
T (t, s)⊕ Li+j+1

(
xi+j+1, x

′
i+j+1

))
.

4. Proofs of main results

Now we give the proofs of theorems 3 and 4 as follows.

Proof of theorem 3. Denote by f (T ) the number of full-hexagons of T .
If f (T ) = 0, then, by theorem 1, we know that theorem 3 holds. Assume the

conclusion of the theorem holds for any T ∈ Tn with f (T ) = k � 0. We now show that
the conclusion holds for any T ∈ Tn with f (T ) = k + 1.

Let T ∈ Tn with f (T ) = k + 1 > 0. Thus n � 4 and T has at least three
branches. Choose two branches B1 = Hi+1Hi . . . H1 and B2 = H ′j+1H

′
j . . . H

′
1 such that

Hi+1 = H ′j+1 is a full-hexagon in T . Assume, without loss of generality, that j � i � 1.
Denote by T ′ the tree-type hexagonal system obtained from T by replacing B1 with

Li+1 and B2 with Lj+1, respectively. In this case, obviously, the union of Li+1 and Lj+1

forms a singly-angular hexagonal chain Li
j with i + j + 1 hexagons.

Denote by T ′′ the tree-type hexagonal system obtained from T ′ by replacing Li
j

with Li+j+1.
By corollaries 1 and 2, we have

µ(T ) > µ
(
T ′

)
> µ

(
T ′′

)
and σ (T ) < σ

(
T ′

)
< σ

(
T ′′

)
. (10)

Note that f (T ′) = f (T ) = k + 1 and f (T ′′) = f (T ′) − 1 = k. By the inductive
hypothesis, we get that µ(Ln) � µ(T ′′) with the equality only if T ′′ = Ln; and σ (Ln) �
σ (T ′′) with the equality only if T ′′ = Ln. From (10), we deduce that µ(Ln) < µ(T )

and that σ (Ln) > σ(T ). The proof of theorem 3 is complete. �

Proof of theorem 4. Let T be any tree-type hexagonal system with n hexagons. If
f (T ) = 0, i.e., T is a hexagonal chain, then theorem 6 holds according to theorem 2.
So we may assume that f (T ) �= 0. Thus n � 4 and T has at least three branches.
Suppose B1 = Hi+1Hi . . . H1 and B2 = H ′j+1H

′
j . . . H

′
1 are two branches of T such that

Hi+1 = H ′j+1 = H is a full-hexagon in T . Let s and t be two vertices of the full-hexagon
H but not in HiHi−1 . . . H1 and H ′jH

′
j−1 . . . H

′
1. Set T1 = T [V (T − (B1 ∪B2))∪ {s, t}].

Then by theorem 5,

µ(T ) � µ
(
T1(s, t)⊕ Li

j (ui, vj )
)

and σ (T ) � σ
(
T1(s, t)⊕ Li

j (ui, vj )
)
.

Using induction on f (T ) and by corollary 2, there is a hexagonal chain C with n

hexagons such that C �= Ln and

µ
(
T1(s, t)⊕ Li

j (ui, vj )
)
> µ(C) and σ

(
T1(s, t)⊕ Li

j (ui, vj )
)
< σ(C).

Therefore, theorem 4 holds by theorem 2. �
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5. Question

From the theorems and corollaries of preceding sections, we can see that if we
denote by T1 and T2 the two corresponding tree-type hexagonal systems appeared in a
theorem or a corollary, then both µ(T1) > µ(T2) and σ (T1) < σ(T2) hold simultane-
ously. We do not know if it is true for any two tree-type hexagonal systems containing
the same number of hexagons. Thus we would like to propose naturally the following
question:

For any T1, T2 ∈ Tn, is it true that µ(T1) > µ(T2) if and only if σ (T1) < σ(T2)?
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